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Abstract

Due to teams trading players and/or changing their manager and players getting
either in or out of injuries and other factors the abilities of teams to score or to prevent
an opponent from scoring changes throughout the season in most if not all sports and
association football is no exception. As such, we developed a dynamic model based on
the Poisson difference distribution, called Skellam, where the scoring abilities are changing
over time and are different across teams. The model is developed in a Bayesian framework
and is fitted using the Stan modelling language. In this paper, we introduce a unique
method used to handle promotion and relegation within the league. The model uses 3
different seasons and the forecasting ability has been measured and validated on the 2018-
2019 English Premier League season. As a result, the model predicts the outcome of the
matches correctly about 60% of the time. Moreover, we find that the model under-performs
somewhat with the best performing, worst performing teams and some of the promotion
teams, which could be attributed to both the fact that the season was an outlier in regards
to performance for these teams and to the possibility that the hierarchical model may have
caused shrinkage.
JEL codes: C11, L83, Z20.
Keyword: Bayesian hierarchical models; dynamic models; English Premier League;
football data; Skellam distribution.

1 Introduction

Forecasting football matches is very popular. In sports betting it is common to simply indicate
if one expects a team to win, lose or draw. Sports betting sites give the opportunity to bet
on the outcomes of football matches on a weekly basis which gives an incentive to develop
statistical models to help make informed bets. Many factors can determine the eventual
result of a match, including the attacking and defensive strength of a team, the home ground
advantage (when applicable) and specific match events. There are several ways to try to
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model these factors to get an informed bet. Koopman and Lit (2019) considers 3 possible
observational variables on which forecast the results of the next match in terms of win, loss or
draw. The first variable is two-dimensional and consists of the numbers of goals scored by the
two opposing teams. The second variable is the difference between the number of goals scored
and the third is simply an indicator of a win, loss or draw. Clearly the informational content
of these variables is decreasing. Besides the observational variable one can also categorize the
different studies done in this field on the basis of the dynamic extension of the model used
in the study. This extension can be either fully dynamic, "semi-dynamic", where one uses
a method of weighted maximum likelihood estimations, or static if no dynamics were used.
Combing these possible extensions, the literature can be organized into nine categories, and
for each of these possibilities there are contributions extending over multiple fields such as
statistics, econometrics and machine learning. As part of the introduction a discussion of the
literature on forecasting football matches will follow.

Most of the studies on the modelling and forecasting of matches focuses on the first variable
described above, where the two observations of the number of goals scored per teams are
assumed to come from a bivariate distribution. Formally the probability of a given match
outcome is given as follows P (X = x, Y = y), for x, y ∈ N0, where X and Y are the numbers
of goals scored by the home and away teams, respectively. The usual focus with forecasting
is the probabilities of a home win, draw or away win; these are the so-called toto probabilities
which are given by P (X > Y ), P (X = Y ), and P (X < Y ), respectively. In the late-1970s
the binomial or negative binomial was suggested as the distributional form by Pollard et al.
(1977). Since then however it has been widely accepted that the Poisson distribution is the
more suitable model for association football results. Since using the Poisson distribution, the
parameters of the distribution can be expressed as a function of how strong the competing
teams’ attacks and defences are. The original proposer of this procedure was Maher (1982),
who expressed the team-specific strengths of attack and defence as a product of two independent
Poisson distributions. In the paper, these parameters were constructed as the product of the
attacking strength of one team and the weakness of the defense of the the other, which both
were estimated statically.

Dixon and Coles (1997) considered the same distribution, and introduced a dependence
parameter for the match results 0-0, 1-0. 0-1 and 1-1. Another proposal made by Dixon and
Coles (1997) was a weighting function to put less weight on the likelihood contributions of
observations from the more distant past meaning that the model was semi-dynamic. Crowder
et al. (2002) formulated the model of Dixon and Coles (1997) as a non-Gaussian state space
model with time-varying strengths for attack and defence, then developed approximating
methods for both the parameter estimation and the signal extraction, since according to
them the exact analysis was too expensive to compute. In practice, Crowder et al. (2002)
extended the model to be dynamic instead of semi-dynamic. Karlis and Ntzoufras (2003)
showed while also using the bivariate Poisson distribution that the introducing a parameter for
the dependence between the goals scored by the two competing teams leads to a more accurate
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outcome prediction of a draw as a result than adding these dynamics. Rue and Salvesen
(2000) incorporated the same framework as Dixon and Coles (1997) and develop a Dynamic
Generalized Linear Model (DGLM) which is analysed continuously over time by Markov chain
Monte Carlo methods. Owen (2011) also proposed using DGLMs and adopted Markov chain
Monte Carlo (MCMC) simulation methods to derive the parameter estimates and predictive
probabilities of match outcomes. Certain model specifications and identifiability constraints
that were implemented in Owen (2011) were also used in this paper and will be discussed
later.Recently, Koopman and Lit (2015) used a non-Gaussian state space framework based on
the bivariate Poisson model with stochastically time-varying attack and defence strengths, and
with some of the above extensions to effectively analyse weekly match results.

The next most popular of the three types of observations is modelling the toto probabilities
directly. The modelling of the match results rather than the score or goal difference should
lead to more parsimonious models and a simpler estimation procedure. With regards to
static models, Koning (2000) investigated the balance in competition in Dutch professional
football with an ordered probit model while having static team strengths. Other static models
using the toto probability as their observational variable are Forrest and Simmons (1999) and
Goddard and Asimakopoulos (2004) who proposed an ordered logit model and an ordered
probit regression model respectively. An early contributor to this section of the forecasting
football results literature was actually a dynamic model and is made by Fahrmeir and Tutz
(1994) who introduced an ordered logit non-Gaussian state space model that incorporated
random walks for the team strengths. The parameter estimation is then done by the Kalman
filter and recursive posterior mode estimation methods. Knorr-Held (2000) applied their
dynamic cumulative link model based on the extended Kalman filter and smoother to German
Bundesliga data. Held and Vollnhals (2005) adopted the model from Knorr-Held (2000) for
evaluating the comparative strengths of the football teams in the 5 top European leagues and
linked them through the European competitions. Hvattum and Arntzen (2010) had a different
proposal using ELO ratings updating over time as their way of representing team strengths
with an ordered logit model. The ELO rating system was originally developed to assess the
strength of chess players (Elo (1978)), but has been widely adopted in various other sports,
including association football (Buchdahl (2003)).

The least popular category is the difference in the number of goals scored in a match which
can also be seen as a team’s margin of victory. In this category we let Z = X − Y be the
difference between the numbers of goals scored by the home team X and the away team Y with
Z = Z. By modelling Z, we can give the toto probability for a home win, draw and away win
by P (Z > 0), P (Z = 0) and P (Z < 0) respectively. The disadvantage that modelling the goal
difference has over modelling the goals is that you will lose some information, since for example,
the pairs (X = 0, Y = 1) and (X = 2, Y = 3) produce the same Z value. The advantage that
comes along with that though is that you need a smaller number of summations in order
to obtain the toto probabilities from Z compared to the pair (X,Y ). Even with given the
advantage using the one variable has over the other and vice versa it might not be immediately
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clear what the overall effect is of modelling Z over (X,Y ). The reasoning behind it is that
the accumulation of modelling error could be smaller, since a smaller number of probability
components are being summed compared to modelling for the goals of both teams. A model
for the differences between the number of goals scored in football matches is provided by Karlis
and Ntzoufras (2009), who introduced the Skellam distribution for analysing match results.
This distribution was originally derived by Skellam (1946) as the difference of 2 independent
Poisson distributions. Karlis and Ntzoufras (2009) show however that the independence is not
strictly necessary and also that the Poisson assumption for the variables is not needed. This
was then later combined in Manderson et al. (2018) to forecast results in a different sport
namely Australian Rules Football with its league the Australian Football League (AFL).

Lastly Koopman and Lit (2019) needs to be mentioned once again as it did not only make
the consideration to categorize the literature into the 3 different observational variables it also
contributed to all of them. Koopman and Lit (2019) developed a new dynamic multivariate
model for the analysis and forecasting of football match results where the dynamic extensions
are based on the class of score-driven models in which the time-varying coefficients are updated
using autoregressive processes. This process is driven by the score of the conditional observation
probability density function. This was then used to investigate which of the three model classes
performs best in forecasting the toto probabilities in the next round of the competition. In the
study dynamic models generally outperformed the static models and the dynamic bivariate
Poisson model (goal scoring) and the dynamic Skellam model (goal difference) turned out to
outperform the ordered probit model (toto probability). The conclusion was that the merging
of data (from two counts, to the difference, to the sign of the difference) leads to decreasing
forecasting performance and that their dynamic model outperformed the benchmark static
models both in precision and betting losses.

Seeing as there is not as much research done in the goal difference category, this study will
look into expanding this particular category. We propose a modelling framework similar to that
of Manderson et al. (2018), however the changes that were made specifically to accommodate
the nature of Australian Rules Football are redirected to better suit (association) football
matches. Besides the scoring there is also another difference between the AFL and most
association football leagues. While the AFL does not have a system of promotion relegation,
most association football leagues do it such as the English Premier League. In order to
accommodate for that most researchers choose to create models for each club and only for
the years that they are a part of the researched league, however we have chosen not to go along
this same path. Instead each season the estimated model of the relegated sides will be given
to the newly promoted sides. How this works and why this was done will be further discussed
in section 3.1.

From applying this model to the English Premier League 2018-2019 season we find that
the model can generally accurately predict who wins or that the result will be draw just over
60% of the time. The model seems to struggle with correctly forecasting the results of the best
and worst performing teams as well as some of the promoted teams this might be due to the
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performance of these teams being historical outliers.
The remainder of the paper is structured as follows: First the framework and details of

the model will be discussed in section 2 which includes a short description of the Skellam
distribution, followed by the construction of the dynamic Bayesian hierarchical model and the
identifiability constraints. Thereafter in section 3 the data description will be given as well as
how the data was handled such as the aforementioned handling of promotion relegation. In
Section 4 the application of the methodology to data from the English Premier League 2018-
2019 will be described and some results will be provided. Lastly in section 5 the conclusions
are provided.

2 Model framework

The core of the model consists of the Skellam distribution. Skellam (1946) defines the
distribution as the difference between two independent Poisson random variables. Consider
two independent Poisson random variables X and Y , with parameters λx and λy respectively.
Then the probability mass function of Z = X − Y is as follows:

f(z|λx, λy) = e−(λx+λy)
(
λx
λy

)z/2
Iz

(
2
√
λxλy

)
.

In this function, Iz(x) is the modified Bessel function of the first kind and the score difference
z ∈ Z. In Figure 1 an example is shown of the Skellam distribution related to the full sample
of the English Premier League seasons. The modified Bessel function of the first kind can be
generally defined as

Iz(x) =
1

2πi

∮
e(x/2)(t+1/tt−z−1dt,

which can be simplified with z is an integer (see Abramowitz and Stegun (1965), Weisstein
(2002)) to:

Iz(x) =
1

π

∫ π

0
excosθcos(zθ)dθ.

The mean and variance of Z are given by

E(Z) = λ1 − λ2, Var(Z) = λ1 + λ2.

As a remark, if there are any possible correlations between the team scores then the variable
Z = X−Y will still follow a Skellam distribution. For example if we would have X = X1 +X0

and Y = X2 +X0 where all the Xis (i = 0, 1, 2) are independent Poisson distributed random
variables (Koopman and Lit (2015)), then Z would be equal to X−Y = X1−X2 which is still
the difference between two independent Poisson distributed random variables and thus would
still follow the Skellam distribution. For this reason, weather, time of play, pitch conditions,
among several other factors influencing both teams equally, can be appropriately modelled
through an X0 as in the example before. Hence, these factors do not need to be explicitly
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Figure 1: The goal difference for the 2016-2019 English premier League seasons, with Skellam distributions
fitted for the Top 5 ranked teams at the end of the 2018-2019 season. The parameter values of the Skellam
distributions are λ1 = 2 and λ2 = 1.5.

modeled for.

2.1 Dynamic structure

Since it can be reasonably assumed that the strength of teams depends on their opponent
and changes over time, the parameters that determine the goal difference λx and λy similarly
need to change over time and depending on their opponent. In other words, they need to be
dynamic. Let teams i and j play each other at time t where team i plays in their home stadium.
The combination of how potent the offence is of a team and how sound the defence is of the
opposing team should determine the scoring ability of a team. Similarly to Manderson et al.
(2018), there is also a home ground advantage included as another factor within the model as
this is also a well-known factor within association football. Let αi,t and βi,t be the attacking
and defensive strength of home team i at time t and let δ be the home ground advantage for
all teams over all time points. Using these definitions in relation to λ1 and λ2, the log link
functions can be defined as:

λ1,i,j,t = exp(δ + αi,t − βj,t), λ2,i,j,t = exp(αj,t − βi,t),

where λ1,i,j,t is the scoring ability of the home team and λ2,i,j,t is the scoring ability of the
away team and i 6= j and t is the time parameter. We assume that each team has its own
attacking and defensive strength for each match and together this represents the performance
of that team for that match. The reasoning for using the δ at all here is that if we look
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over all the considered seasons the home team on average scores 1.5658 goals with a standard
deviation of 1.3192 which is slightly more than away teams who score 1.2009 goals with a
standard deviation of 1.1952 as you can see in Table A.4 in section A.1. As in Manderson et al.
(2018) we argue that a different δ parameter per team would be an insufficient specification.
As the strength of a team changes, the home advantage might change accordingly. Hence the
parameters would also need to change over time and depend on their opponent. This would
lead to a large number of extra parameters. To avoid overfitting the model, you would then
also need to put into place heavy regulations on these extra parameters. This would make
the model unnecessarily complex. Another note should be made of the fact that in contrast
to Manderson et al. (2018) there is no λ3 and λ4 for the behind difference. Seeing as these
are specific to the sport of Australian Rules Football and do not have a similar counterpart in
European Football Leagues.

With the use of autoregressive processes similar to the once used in Manderson et al.
(2018) on both the attacking and defensive strengths we can create variation in them over
time. Explicitly:

αi,t = µα,i + φααi,t−1 + εα,i,t,

βi,t = µβ,i + φββi,t−1 + εβ,i,t,

where the autoregressive means are denoted by µα,i and µβ,i, the coefficients are denoted as
φα and φβ and lastly εα,i,t and εβ,i,t are error terms with a normal distribution. Comparably
to Koopman and Lit (2015) and Manderson et al. (2018), to reduce the number of parameters
for precise inference, the assumption is made that the autoregressive coefficients are constant
for each team. Since it is expected that the possible shift in performance from game to game
to be similar between teams. The error terms are assumed to be independently and normally
distributed:

εk,i,t ∼ N(0, σ2k), k = α, β,

and are also assumed to be the same for all teams attacking and defensive processes.

2.2 Bayesian specification

For the last part of the model description we need to specify the priors. Notably priors are by
definition not objective and are considerably influenced by other implementations of similar
models. On the standard deviation we place a Gamma1 prior similarly to Baio and Blangiardo
(2010), as

σk ∼ Γ(0.1, 0.1), k = α, β.

On the φ parameters of the autoregressive process, we place the following prior:

φk ∼ Γ(9, 10), k = α, β,

1For the used parametrization x ∼ Γ(a, b) has E[x] = a/b and V ar[x] = a/b2
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as the estimate for φ is expected to be high. Another argument for this being that Koopman
and Lit (2015) had high estimated values for their Premier League data. As mentioned by
Manderson et al. (2018) an added benefit to using a prior with large estimates is that any
potential numerical problems that we might have come across from φ estimates that are nearing
zero are avoided. As Manderson et al. (2018) also mentions as with their specification, this
specification might be perceived as being quite informative, but we also have a data set which
is quite large with several distinct time series. Meaning that the posterior estimate for φ can
easily still take on values that belong to intervals with low probability.

2.3 Constraints for precise inference and its consequences

Similarly to Manderson et al. (2018), we encounter problems because of the structure of the
time series. There are a large number of latent variables. This is problematic since it can create
difficulties and inconsistencies with the fitting of the model. In order to make sure that every
time the model is fitted it ends up at the same appropriate model each time or in other words
to ensure precise inference (or identifiability) some constraints need to be added. For each
round in the data set, the parameters (αi,t, βi,t) have to be considered for each team. Together
with the offensive and defensive autoregressive mean of each team (µα, µβ), the autoregressive
coefficients (φα, φβ), the home ground advantage (δ) and other latent variables this results into
a lot of parameters and latent variables with the used data set.

As with Manderson et al. (2018), how good the two teams are comparatively is the only
important value in the end. Thus nothing changes for the effectiveness of the model as long
as the relative difference between the autoregressive estimates remains equal, thus how much
stronger a team’s attack strength is compared to its opponent is not being altered for example.
As such we can also use a sum-to-zero constraint to all the autoregressive parameters without
affecting the model negatively:

n∑
i=1

αi,t = 0,

n∑
i=1

βi,t = 0, (1)

for all t ∈ {1, ..., T}. T is the total amount of rounds in the data set and n is the number of
teams in the Premier league which for all considered seasons is 20. In section 3 the specifics
of these values are discussed. Again using the same method as in Manderson et al. (2018) the
constraints are implemented by defining the nth parameter to be:

αn,t = −
n−1∑
i=1

αi,t, βn,t = −
n−1∑
i=1

βi,t,

for a given time t.
However as Manderson et al. (2018) also pointed out this approach leads to the estimates

for the nth parameters to be considerably higher or lower than any of the other parameter
estimates at that given time. This might be because the nth parameter estimate being equal
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to the negative sum of the other estimates is only fine if the prior on the parameters (here
on the first n-1) does not depend on the hyperpriors, as the hyperpriors should be informed
by all n parameters, and not just n-1 as discussed in Kruschke (2011). However the prior on
the parameters with this time series does not depend on the hyperpriors. A more in-depth
discussion can be found in Knorr-Held (2000).

By using the same idea as Manderson et al. (2018) which itself came from Knorr-Held (2000)
and Owen (2011) this numerical irregularity and computational inefficiency can be corrected.
If the parameters αi for i ∈ {1, . . . , n} are considered then the following multivariate normal
distribution can be formed showing its relation to the past:

αt ∼ N(φααt−1 + µα,D)

where αt = (α1t, . . . , αnt) is a vector containing the attacking strength of teams 1 through n
at time t, µα is a vector of autoregressive means for the α process and D is a diagonal matrix
of σ2α’s. Naturally the initial values of the time series would be α1 ∼ N(φaµα,D) where µα

is still a vector of autoregressive means for the α process. There is an implicit condition for
the sum of elements of µα to be zero as the sum-to-zero constraints need to hold for all time
points and t = 1 is not excluded from that. Additionally, in Owen (2011) it is shown that for
equation (1) to hold the covariance matrix D must altered to be of the following form:

R =
nσ2

(n− 1)

(
In −

1

n
1n1T

n

)
,

where n is the amount of teams in the league, In is an identity matrix of (n × n) and 1n
is a vector of ones (n × 1). As mentioned by Manderson et al. (2018) with this form of R
one faces other problems, since R is not of full rank and thus has no inverse which makes it
impossible for Stan to sample from the multivariate normal distribution directly where R is
used for the covariance structure. Instead we will opt for the same sampling method as shown
by Manderson et al. (2018). The sampling will be done from the following (n− 1) dimensional
multivariate normal distribution as it has an appropriate mean and covariance structure:

W =
nσ2

(n− 1)

(
In−1 + 1n−11T

n−1

)
,

hereafter these variates consistent with Manderson et al. (2018) will be referred to as the raw
parameters. Transforming these raw parameters into the parameters of interest is done by the
following n× (n− 1) matrix:

J =

In−1 −
1
n1n−11

T
n−1

− 1
n1

T
n−1

 ,

the structure of J implements the desired centering constraints. To show what this entails
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practically take the (n− 1) dimensional raw means of all the autoregressive processes:

µα,raw ∼ N(0, σ2µW), µβ,raw ∼ N(0, σ2µW).

The raw means are then transformed by J into the parameters used for inference:

µα = Jµα,raw, µβ = Jµβ,raw.

Through this same process one can find the initial values for the team strength parameters,
which are the following zero mean distributions:

αt,raw ∼ N(0, σ2αW), βt,raw ∼ N(0, σ2βW).

With those the initial values can be found:

α1 = µα +
σ2α√

1− φ2α
α1,raw, β1 = µβ +

σ2β√
1− φ2β

β1,raw.

Finally, starting from these initial values the following formulas for the ’attack’ and ’defence’
strengths can be formed by continuously going towards the next time point:

αt+1 = φααt + µα + σ2αJαt+1,raw

βt+1 = φββt + µβ + σ2βJβt+1,raw

To finish the hierarchical specification a prior distribution has to be chosen for σµ, which as
Manderson et al. (2018) is chosen to be uniform:

σµ ∼ U(0.005, 1).

The reason that this variance parameter bound is quite small is because there is limited
variability in the value of µ. This reflects the fact that a single unexpected results only slightly
changes the mean of the underlying autoregressive process. This is all similar to Manderson
et al. (2018), although other Bayesian analyses do not allow this parameter to vary at all, and
simply fix it at a particular values (see for example, Baio and Blangiardo (2010)).

In Figure 2 we present a graphical representation of this model, which is arranged as
follows: the node in the bottom layer represents the data generating Skellam distribution,
with the nodes in the second layer representing the parameters that govern this distribution,
except for the black node in this layer which represents the home ground advantage. The nodes
in the third and fourth layers relate to the time series structure, and lastly the nodes in the
remaining layers represent the prior distributions required to complete the model specification.
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Figure 2: A graphical depiction of the structure of the model.

2.4 Inter-season variance

As most player purchases and training of players happens during the off season, a team can
improve or decline from the end of a season to the start of the next season through several
potential means like player purchases or sales or changes in management and training. As
a time variable usually only indexes an occurrence it does not take into consideration this
potentially substantial change between seasons.

To model for this change in performance during an off season can be considered difficult as
a team’s strategy in the off season may change considerably each year as well. Especially now
that the Financial Fair Play (UEFA Financial Fair Play) was introduced in June 2010 which
limits clubs over an assessment period of 3 years to not spend more money than they earn
contrary to what would happen in the past were clubs would put themselves in high amounts
of debt in order to get higher up or stay in the highest division. Thus there are a few data
points associated with inter-seasonal change of performance, which are highly variable.

In the model, inter-season variance is handled by increasing the variance of the time series
estimates at the start of each season. The variance of the rounds directly after are also increased
but to a lesser extent. The assumption behind this is that the first round will show most of
the information about a team’s inter-seasonal change. For this we use the same exponentially
decaying factor as Manderson et al. (2018) of (ν − 1)exp{−(t− tss)}+ 1 such that:

αi,t ∼
(
µi + φaαi,t−1,

[ (
(ν − 1)exp{−(t− tss)}+ 1

)
σa
]2)

,

where tss is the season start time point and ν is the inflation factor for the variance that is
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chosen.

3 Miscellaneous details & Data description

The English Premier League (EPL) has 20 teams (i.e. n = 20), which each season play
each other 2 times once at their home ground and once at the other team’s home ground
for a total of 380 matches over 38 rounds each containing 10 matches. The data used here
was from the seasons 2016-2017, 2017-2018 and the season 2018-2019 and can be found on
http://www.football-data.co.uk/. Note that the seasons 2016-2017 and 2017-2018 were
used as historical data to forecast the 2018-2019 season.

3.1 Promotion & Relegation

As with every football league a team receives 3 points for a win, one for a draw and zero for
a loss. Also as in most football leagues at the end of the season a few teams go down to
a lower league and are replaced by some teams from that lower league. In the case of the
English Premier league 3 teams with the worst amount of points are relegated to the English
Football League (EFL) Championship and replaced by the top two of the EFL Championship
and the winner of the play-offs between the teams that finished in third through sixth in that
league. Instead of for example opting to disregard the teams that are not in the data for all
the considered years which would be 15 out of the 20 teams (25% of all teams in the league)
we went with a different approach. Seeing that most of the time the newly promoted teams
are deemed likely to immediately relegate back down. This inspired the choice to utilise the
data and model of the relegated teams. To achieve this continuous use of the parameters
every team is not only represented by its name, but is also given a team number. For the first
season the assignment of the team numbers is simply done alphabetically. Thereafter however
the non-relegated teams retain the same team number and the newly promoted sides will be
given the number of a relegated team along the past season’s final standings. We simplify this
concept in Table 1. Here one can see the given team numbers per season with several teams
highlighted. The teams in italic are the teams that in that particular season relegated to the
EFL Championship. The teams written in bold are the teams that were newly promoted in
that particular season.As you can clearly see these teams are not added alphabetically.

The replacement is done as follows: At the beginning of the EPL season last season’s
champion, runner-up and play-off winner of the EFL Championship will be assigned the
parameters that the numbers 18, 19 and 20 had at the end of the previous season, respectively.
Between the 2016-2017 and 2017-2018 seasons means the following: Hull, Middlesbrough and
Sunderland were 18th, 19th and 20th, respectively in the final standings of the Premier League
for the 2016-2017 season while Newcastle, Brighton and Huddersfield were 1st, 2nd and the
playoff winner, respectively in the EFL Championship. As logic would dictate the best of
the relegated teams would be Hull and it’s estimated model is past down to Newcastle who
would be the best of the promoted teams. The same goes for the second best Middlesbrough
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and Brighton and the worst of the three Sunderland and Huddersfield. This process is then
repeated between seasons 2017-2018 and 2018-2019.

Although as you might notice only 2 out of the 9 teams those being Cardiff and Fulham in
the 2018-2019 season that were newly promoted to the Premier league went immediately back
down to the EFL Championship in the considered seasons, however this does not necessarily
have to negatively impact the predictive ability of the model, since the parameters change over
time according to the actual results. Thus if a newly promoted team performs very well the
model will adjust to this. It should still aid the performance as supposed to alternative of
using the quite uninformative prior since this can both severely underestimate or overestimate
the performance of these newly promoted teams.

Team Number 2016-2017 2017-2018 2018-2019
1 Arsenal Arsenal Arsenal
2 Bournemouth Bournemouth Bournemouth
3 Burnley Burnley Burnley
4 Chelsea Chelsea Chelsea
5 Crystal Palace Crystal Palace Crystal Palace
6 Everton Everton Everton
7 Hull Newcastle Newcastle
8 Leicester Leicester Leicester
9 Liverpool Liverpool Liverpool
10 Man City Man City Man City
11 Man United Man United Man United
12 Middlesbrough Brighton Brighton
13 Southampton Southampton Southampton
14 Stoke Stoke Cardiff
15 Sunderland Huddersfield Huddersfield
16 Swansea Swansea Wolves
17 Tottenham Tottenham Tottenham
18 Watford Watford Watford
19 West Brom West Brom Fulham
20 West Ham West Ham West Ham

Table 1: Given team numbers per season of English Premier League. The bold teams are the newly promoted
teams of that particular season and the italic teams are the teams that relegate that season.

3.2 Data adjustments

Besides the handling of the promotion and relegation there is also an issue regarding the
rounds in the English Premier League. As mentioned at the beginning of this section the 380
matches of the league are divided into 38 rounds of each 10 matches. However because of other
competitions whose matches are not all known beforehand it is also not uncommon that certain
matches need to be moved to another date. This means that they were not played during the
rest of the round but at an earlier or later date. Seeing as the data set has all matches sorted
on date without including the round of which they were a part of this has consequences for the
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workings of the model. Namely the consequence of these rescheduled matches is that the way
the model is set up to predict one round at a time does not work properly, because there were
rounds where certain teams would play more than one game and other teams were not in that
round. This would mean that some teams can earn up to 6 points in one round and others 0.
Which it was not set up to do naturally since a team should only play one game each round.
Allowing for this would make it impossible to accurately compare the teams’ performance over
the whole season.

For clarity we will give an example: The match between Everton and Manchester City in
the 2018/19 season was originally part of round 27 (22-24 Feb 2019), but was actually played
in between rounds 25 and 26 (6 Feb 2019). This results that if we take every 10 matches as
being a round the match between Everton and Manchester City would be part of round 26
instead of 27 and the last match in the data set of round 26 would be part of round 27 and
this would trickle down the whole data set. With multiple rescheduled games this problem of
course can become a much bigger problem.

There are a few ways we saw into resolving this issue. One was simply finding a data set
which included the round the match was originally a part of. Sadly such a usable data set
could not be found. Another solution is allowing different amounts of matches to be considered
a round. Problem with this solution is that you are still allowing a team to either not to be a
part of a round or play in it twice. Which would mean that you still have the same problem
as before of having some teams earn a maximum of 6 and others no points during a round.

A third possible solution was to rework the entire model to instead of working on just
a round by round basis to work on a round by round team basis. Meaning that you would
estimate each team round by round. This would however take a lot of time to run since instead
of having to simulate for 38 rounds one would have to simulate those 38 rounds 20 times for
each team once, which comes down to 760 simulations.

The last and eventually chosen solution is to manually adjust the data sets for all season
so that the games that were being played at another time will be with the rest of the originally
scheduled round. This has as a benefit over the other solutions that there are still always ten
matches each round and each team is just represented once, which means that you can still
see and compare how teams perform over the whole season. There is still a downside to this
solution with regards to the form of a team, however, as it is quite common that during certain
periods the team performs above their normal level and other periods when the team performs
under their usual level. Meaning that if you shift games from when they were actually played
to a different time this might negatively affect these patterns that you would otherwise see or
possibly your predictions on those matches might be slightly off. However it should not have
a bad overall impact on the evaluation of a team’s strength.

14



4 Results

4.1 Model fitting, estimations and predictions

The described model of Section 2 was coded in the Stan modelling language and fitted using
the rstan interface. Specifically, the concern is the estimation of the binary results being
either a win or a loss, as well as the win, draw and loss (WDL) probabilities for the 2018-2019
English Premier League season. The data from 2016-2017 season to 2018-2019 were used to
both fit the model and predict the results. Each round took a few hours to fit from home with
acceptable convergence, which means that the model could be used round to round forecasting
setting.

As Manderson et al. (2018) we took the most important parameters for a stable model those
being αi,t and βi,t in our case (∀ i ∈ {1, . . . , n} and ∀ t ∈ {1, . . . , T}) and looked at traceplots
and density estimates to assess convergence of the MCMC chains. In Figure 3 we show the
traceplots and density estimates of the parameters α1,38 and β1,38 as an typical example and
they do seem to converge. Other examples for the top 5 teams of the 2018-2019 season at
three different time points, specifically the first round, the mid-season point (round 19) and
at the end-of-season (round 38), can be found in appendix A.3. Furthermore in Figure 4 and
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Figure 3: A traceplot and density estimate of the Goal Attack (top) and Defence parameter (bottom) for
Arsenal at time point 38 generated with 1.000 iterations.

5 you can see an example of the variation of the attacking strength and defence strength over
the different rounds which formally can be seen as the mean of the posterior distribution also
known as the posterior mean. In order to best compare the teams in these figures only the top 5
ranked teams in the 2018-2019 season are shown. These teams ranked in the following order in
the final standings of the 2018-2019 season: Manchester City, Liverpool, Chelsea, Tottenham
and Arsenal. The posterior means for the strength of all teams over the different rounds can
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be found in appendix A.2. In these figures we see that for the most part of the sample for
both the attacking and defence strength do not change in a major way after initialisation. The
initialisation is generally quite different from the values that the posterior means hover around,
because of the uninformative priors. However because of the dynamic elements the posterior
means will come closer to what the "actual" value might be. But besides the initialisation there
are still some noteworthy variations. For defence strength the most notable larger variations
happen for Arsenal and Chelsea at the beginning of the second season, the 2017-2018 season.
This can be explained through a combination of form of the team and the inter-season variance
that decays over several rounds. As a general rule most variations could be attributed to either
or both of these reasons. For the attacking strength only Manchester City seem to drastically
vary mostly in the 2017-2018 season, but if we take into consideration the graph of Manchester
City goals scored and conceded in Figure A.1 we can argue that goals scored during the 2017-
2018 season greatly vary as well particularly in the beginning of the 2017-2018 season. This
combined with the inter-season variance can explain why there is a huge spike in the attacking
strength of Manchester City at the beginning of the 2017-2018 season as well as during all
seasons.

Besides the individual variations in strength both in defensive and attacking sense another
note can be made about the differences between teams. For attacking strength Manchester
City over these particular seasons are constantly above the rest. There are times that it is
close, but Manchester City never gets passed in attacking strength in the model. The other
four teams displayed in Figure 4 are far closer together and it constantly changes which team
has an higher attacking strength. For defence strength it is a slightly different story however,
Manchester City also has the best defence strength over all the researched seasons only falling
below other teams about a handful of times, however, the difference between itself and two
other teams of the "Top 5" are far smaller than with the attacking strength. The two teams
closer to Manchester City with regards to Defence strength are Liverpool and Tottenham,
who are quite close to each other and in the first two seasons seem to jump each other quite
frequently only in the last season does Tottenham not pass Liverpool in regards to defence
strength. Below these two teams are the last two teams of this "Top 5" Arsenal and Chelsea
whose Defence strength sits a bit below that of Liverpool and Tottenham but Arsenal and
Chelsea also constantly pass each other when it comes to the attacking strength in this model.
Given that these figures show the strength of both the defence and offensive of the teams you
could believe that you could already with some confidence give the relative ranking of these
teams for all three seasons, however this does not work. If we look at Table 2 we can see that
the relative rankings of these teams do not fall in completely fall in line with the combinations
of offensive and defensive strength posterior means shown in Figure 4 and 5. This is because
these graphs although based on previous results do not give you the actual results and even
though if a team has an occasional unexpected loss or draw this does not severely impact their
estimates for defence and attacking strength it might have a major impact on their chances of
actually winning the league.
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Figure 4: Posterior mean of the attacking strength from the 5 highest ranked teams (magenta for Arsenal,
blue for Chelsea, red for Liverpool, light blue for Manchester City and black for Tottenham) in the 2018-2019
English Premier League season, where the vertical dotted lines indicate the end of a season.

Figure 5: Posterior mean of the defence strength from the 5 highest ranked teams (magenta for Arsenal, blue
for Chelsea, red for Liverpool, light blue for Manchester City and black for Tottenham) in the 2018-2019
English Premier League season, where the vertical dotted lines indicate the end of a season.
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2016-2017 2017-2018 2018-2019
Chelsea Manchester City Manchester City
Tottenham Tottenham Liverpool
Manchester City Liverpool Chelsea
Liverpool Chelsea Tottenham
Arsenal Arsenal Arsenal

Table 2: Relative rankings in the final standings of the 2016-2017, 2017-2018 and 2018-2019 English Premier
League season from the top 5 ranked teams of 2018-2019 season

4.2 Predictive results of the 2018-2019 English Premier League season and
model validation

Predictions for match results were obtained by continuously going one-step ahead, meaning
that all results from the previous rounds were used to predict the current round. The associated
probabilities and estimated differences were generated by sampling from the posterior predictive
distribution of the parameters. For practical reasons these predictions included also a predicted
point difference, as well as the associated WDL probabilities. There were also prediction
intervals constructed for the score differences of each match and a check whether each actual
difference was contained within their corresponding interval.

Figure 6: Predictive performance model over the 2018-2019 season round by round (red line). The black
line is the fraction of the correctly predicted games over the season up to and including that point (e.g.
point at round two is mean proportion of games correctly predicted in rounds 1 and 2).

Also as in Manderson et al. (2018) Figure 6 shows how accurate our predictions for the
results were each round across the 2018-2019 season, where the red line shows the fraction of
correctly predicted matches that round and the black line is the fraction of correct predictions
up until then including the round itself or in other words the mean performance. The total
number of correctly predicted matches was 229 out of a possible 380 which means that just
over 60% of all games were predicted correctly. Over time there are generally periods the
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performance is above the mean and periods below it. What is immediately noticeable however
is that after round 30 both the best and worst performance is reached. The best being round
32 where every match was predicted correctly, however 6 rounds later in round 36 the least
amount of matches had the correct prediction with only 3 out of 10. A possible explanation for
this big difference in performance might have to do that while some clubs are still playing for
something whether that is winning the league, reaching either Champions League or Europa
League qualification standings or avoiding relegation other teams might be complacent because
they have already reached their goal or their goal is out of reach. However it is also possible
that it may come from fatigue or other unknown factors which presented itself as random
variation.

For the most part however the model predicts at least 50% of matches correctly. The only
exceptions being the before mentioned end of the season, but also one round in the middle
of the season more specifically round 19, which as it turns out was the round in the season
2018-2019 played on the 26th of December which is known in the United Kingdom as Boxing
Day. In the UK there is a longstanding tradition to play on Boxing Day originally done to
bumper audiences, since all workers had the day off. Now it is just a long rooted family
orientated tradition.2 However as you can imagine there is a lot more pressure from fans and
for British players also family to perform well on Boxing Day making it likely that any team
can either perform better or worse than they normally would. Following round 19 on Boxing
Day there are 2 more rounds between Boxing Day and January 4th, where normally there is
about one week between each round. Which could possibly lead to bad performances as well
and although the model performs under the mean it does predict the results correctly about
half of the time with around 16 games predicted correctly out of a possible 30 in rounds 20,
21 and 22 altogether.

As mentioned by Manderson et al. (2018) looking at the outcomes is definitely interesting
for when one would want to use this model practically, it is not necessarily the best way to
judge the performance of the model. For example, if the model predicts a goal difference of +1,
but the model also has an estimated standard deviation of 3, and the actual result is either 0
or -1 than one would consider the prediction to be good and reasonable. However if you only
look at the exact prediction of a win, loss or a draw then you would only see this prediction
as incorrect. To have better insights in the model’s performance, similarly to Manderson et al.
(2018) a approximate prediction interval is constructed by using the estimations and standard
deviations of the model. For the same reasons as with they had of having a large amount
of samples and seemingly symmetric traceplots a normal interval can also be constructed. In
Figure 7 you can see both the coverage probability estimated by the model and the actual
coverage probability of the 100(1 − α)/2% prediction intervals as a function of α. For all
values of α it shows that the model is reasonably well behaved, since the difference between
the actual coverage and nominal coverage not too large. One can also see that the actual
coverage is generally slightly higher than the ideal one. Another validation method for the

2https://www.bbc.co.uk/bitesize/articles/z4y847h
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Figure 7: The coverage probability ((1−α)/2) as a function of the normal quantile α used for the prediction
interval construction. The blue and black lines show the nominal coverage and the actual coverage,
respectively.

predictive capabilities of the model in particular the estimated WDL probabilities that were
used was estimating the amount of points each team should have at each time point in the
season, similarly to Manderson et al. (2018). By taking the estimated probabilities for each
type of result and multiplying it by the amount of points that can be earned for such a result
(which is as mentioned before three for a win, one for a draw and zero for a loss) gives the
expected number of points in each match. With that we can map both the predicted points
and the actual points for each team for the season round by round. The result of this can be
seen in Figure 8. Note that for most teams the predicted and actual point totals are relatively
close. There are a few exceptions to this. Liverpool is the highest ranked of these exceptions
who scored 97 points compared to the predicted point total of around 78. This was however
an historical performance, since this was the third-highest total in the history of the English
top division and the most points scored by a team without winning the title.3 Implying that
it was unlikely to happen.
Wolves is another exception. The newly promoted team ended with more points than predicted
as well in their case with 57 actual points where there were 43 predicted. This is however also

3https:
//www.theguardian.com/football/2019/may/12/liverpool-wolves-premier-league-match-report
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quite an historic accomplishment seeing as they were ranked higher than any promoted side
since Ipswich Town in 2000-2001.4

The last two teams that had a great discrepancy between their actual acquired points and
the amount of points that the model predicted are two relegated teams namely Huddersfield
and Fulham. Huddersfield finished the Premier League season at the bottom of the table with
16 points, one of the lowest totals ever recorded in the competition’s history. According to
some sources, their relegation can be blamed on their shoestring budget and mismanagement
this season.5 Fulham had no shoestring budget spending over £100m, but according to experts
there was mismanagement which can be somewhat backed up by the statistics. Their first
manager was fired after not getting win in seven matches, the second manager did not help
improve Fulham however seeing as Fulham did not win a single league match over the winter
period. The third manager did win three matches in the last month, which ended up making
the difference between the predicted point total and actual points a bit smaller, however still
significant.6

Another explanation for the worse performance shown by the validation method seen in
Figure 8 is that the model, as is expected of a hierarchical model, causes shrinkage. Similarly
to Manderson et al. (2018) the under-performing teams such as Huddersfield, Fulham and
perhaps also Watford having their win rates over-predicted while higher performing teams like
Manchester City, Liverpool and Wolves have their win rates under-predicted by the model.
Unlike Manderson et al. (2018) however, there does not seem to be an apparent higher difficulty
in predicting outcomes at the start of the season. Perhaps because unlike in their researched
season of the AFL where teams unexpectedly won or lost games at the start of the season in
the beginning of the 2018-2019 Premier League season the results were more as expected.

4https://www.itfc.co.uk/club/history/
5https://www.90min.com/posts/

6368775-huddersfield-town-2018-19-review-end-of-season-report-card-for-the-terriers
6https://www.90min.com/posts/

6368723-fulham-2018-19-review-end-of-season-report-card-for-the-cottagers
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Figure 8: The predicted competition points (blue lines) and the actual total point (magenta lines) of each
team over the 2018-2019 season round by round. The plots are sorted from right to left, top to bottom
based on the actual standings at the end of the 2018-2019 season.

5 Conclusions

Currently there is less research done in using the difference in the amount of goals scored as the
observational variable in attempting to forecast results of association football matches. This
paper provides an approach to modelling football results using dynamic hierarchical Bayesian
models similar to the model used by Manderson et al. (2018) for modelling AFL results which in
turn was based on Baio and Blangiardo (2010) and Owen (2011). The models are based on the
Skellam distribution and appropriate methods were applied to rectify problems in constraining
parameters, model identifiability, scheduling of the match rounds and promotion & relegation.
The final model is in the form of a Stan model, which enables the generation of predictive
results and applied this model to data from the 2018-2019 English Premier League season, and
achieved a comparable predictive performance to other soccer outcome models.

Future research can be done for the interesting 2019-2020 season. Besides it being a
interesting season in general for several football-related reasons one could look at what the
effects were of the midseason stoppage of matches being played, because of the Covid-19
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pandemic. Potentially this could be another break in the data similar to the break between
seasons and therefore potentially the inter-season variance method can also be applied to this
break.

Furthermore as the newly promoted teams, best and worst performing teams had the
worst predictive performance possibly these teams need to be identified in order to introduce
some extra adjustments as a means to increase the predictive capabilities and also to reduce
shrinkage issues. This might also aid into more conclusively being able to state whether or not
the method used for handling the promotion & relegation where the promoted team adopts
the predicted parameters of a relegated team is viable.

There can also be further extended upon this paper by validating the model through its
viability in sports betting. What we have not read as being researched is not only testing
which model performs best in regards of sports betting in predicting whether the result will
be a home win, away win or a draw, but also testing whether the models predict either the
exact score or the goal difference well enough so that it can increase the success in sports
betting. Since many bookmakers have options on predicting both the exact score and margin
of victory of a match and if they do increase the betting success it gives them an added usage
over predicting the toto probability directly.
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A Appendix

A.1 Data description

Table A.1, A.2 and A.3 report the descriptive statistics of the different seasons separately while
Table A.4 shows the statistics of all seasons combined for the different observational variables
home goals, away goals and the goal difference. The descriptive statistics in these tables are
in order the minimum, maximum, median, mean, standard deviation, skewness and kurtosis.
Comparing each of these statistics we can notice several things.

Home Goals Away Goals Goal difference
min 0 0 -6
max 6 7 5
median 1 1 0
mean 1.5973 1.2026 0.3947
std.dev 1.3070 1.2279 1.9073
skewness 0.7353 1.1550 -0.2504
kurtosis 0.1656 1.4632 0.1532

Table A.1: Descriptive statistics of the 2016/2017 English Premier League season.

Home Goals Away Goals Goal difference
min 0 0 -6
max 7 6 5
median 1 1 0
mean 1.5316 1.14737 0.3842
std.dev 1.3401 1.1778 1.8956
skewness 0.9530 1.0378 0.02808
kurtosis 0.6284 0.7108 0.3178

Table A.2: Descriptive statistics of the 2017-2018 English Premier League season.

Home Goals Away Goals Goal difference
min 0 0 -5
max 6 6 6
median 1 1 0
mean 1.5684 1.2526 0.3158
std.dev 1.3128 1.1800 1.9152
skewness 0.8005 0.9640 -0.06852
kurtosis 0.3531 0.8818 0.02722

Table A.3: Descriptive statistics of the 2018-2019 English Premier League season.

Looking at the minimums and maximums we can see that if the maximum amount of Home
Goals equals the maximum amount in Goal difference you can infer what the biggest home
victory was that season. An example of this can be seen in Table A.3 where the maximums of
both the Home Goals and Goal difference were 6 which infers that the biggest home win in the
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Home Goals Away Goals Goal difference
min 0 0 -6
max 7 7 6
median 1 1 0
mean 1.5658 1.2009 0.3649
std.dev 1.3192 1.1952 1.9047
skewness 0.8331 1.0581 -0.09814
kurtosis 0.3941 1.0577 0.1728

Table A.4: Descriptive statistics of the 2016-2017, 2017-2018 and 2018-2019 English Premier League seasons
combined.

2018-2019 season is a 6-0 victory. The equivalent is true for the maximum amount of Away
Goals and the minimum amount in Goal difference. An example of this can be seen in Table
A.3 where the minimum Away Goals and minimum amount in Goal difference are 6 and -6
respectively, which would indicate that the biggest away victory had a score of 6-0. Note that
if this is not the case this cannot be automatically inferred and in Table A.3 the maximum
Away Goals is 6, which is one higher than the minimum Goal difference. One might believe
that the biggest away victory might be 6-1, however if we go look into the data the result of
the match with 6 away goals was actually 6-2 and the biggest away win was a 5-0 victory.

Besides inferring the biggest wins of the season, we can see from these statistics that in
each season and over all seasons, the mean of the Home Goals is higher than that of the Away
Goals and thus the mean of the Goal difference is also significantly above zero. The median,
however is the same each season for Home Goals and Away Goals and the Goal difference is
zero. This seems to suggest that although the home advantage is present it is not the only
deciding factor for the result.

The standard deviation (std. dev) shows the volatility of the observational variable. As it
turns out for all seasons separately and combined the volatility of Home Goals is higher than
the Away Goals. Since both variables are unable to go below zero and the kurtosis from Home
Goals is also higher than the kurtosis of Away Goals one can conclude that the high volatility is
a further indication that the home advantage is a present phenomenon in the English Premier
League. The overall higher volatility for the Goal difference than both other variables can be
simply attributed to the fact that the Goal difference can be both positive or negative due to
its definition.

The last two statistics skewness and kurtosis in all these tables are also interesting.
Skewness seems to be slightly more positive for Away Goals than Home Goals which also
suggests that the away teams seem to score less goals especially if you consider it in combination
with the standard deviation. The skewness of Goal difference meanwhile is mostly close to
zero, but it is slightly more negative in the 2016-2017 season suggesting that generally the
distribution is quite symmetrical, but in the 2016-2017 season slightly more often on average
the team playing at home scored more goals. For all variables over all seasons, the kurtosis is
lower than the kurtosis of a normal distribution of 3. Meaning that they are all less peaked
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around their mean than the normal distribution and thus that it is more likely to differ from
their means than if they were normally distributed which is consistent with what one would
expect, because although given the various means and medians the average result would be a
1-1 draw this is usually not the most likely result of a single match.

Figure A.1 shows the goals scored and conceded of each team. By glancing at these graphs
one can easily separate the top teams from the lower ranked teams. What also can be seen
is that for some teams the amount of goals scored and the amount of goals conceded do
not change much from season to season (for example Bournemouth), however for teams like
Burnley, Crystal Palace, Leicester and West Ham it does change quite substantially which
seems to encourage the use of the inter-season variance discussed in section 2.4. Note that in
line with the handling of the promotion and relegation mentioned in section 3.1 some teams
share their graph with another team, this team being the same team that they share their team
number with. Interesting to see in these graphs is whether there is a big difference between
the amount of goals scored and conceded as the graph starts to depict another team. This
difference does seem quite substantial for some but generally not more than non-relegated
teams generally change between seasons. An exception to this and where there is a biggest
difference between teams is Wolves who both seem to score more goals and concede less than
Swansea did in the 2 seasons before relegating. Although in the beginning of the season there
are some narrow defeats for the Wolves. It will be interesting to see how the model handles
this. But it seems that it can be expected that this would lead to the predictions for Wolves
to not be quite as good as others might be. For other teams however if one looks at the
graphs it looks as the same team. A good example of this is Cardiff that seem to have quite
similar amounts of goals scored and conceded as Stoke had the season before. This should
mean that the predictions of Cardiff should be relatively close to the actual results compared
to predictions of teams that have not significantly changed between seasons.
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Figure A.1: Amount of goals scored (blue lines) and conceded red lines) over the 2016-2017, 2017-2018 and
2018-2019 English Premier League season by each team. Team1(x)/Team2(y) = Team1 played the first x
of the 3 seasons in the Premier League and Team2 played the last y of the 3 seasons in the Premier League.
Black vertical dashed lines indicate the end of a season.
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A.2 Posterior means of Defence and Attacking strength

In this section, we present the posterior mean of the defense and attacking strengths of different
teams across the 3 seasons.

Figure A.2: Posterior means of the defense (left) and attacking (right) strength for Burnley (top) and
Chelsea (bottom) for the 3 seasons.

Figure A.3: Posterior means of the defense (left) and attacking (right) strength for Arsenal (top) and
Bournemouth (bottom) for the 3 seasons.
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Figure A.4: Posterior means of the defense (left) and attacking (right) strength for Crystal Palace (top) and
Everton (bottom) for the 3 seasons.

Figure A.5: Posterior means of the defense (left) and attacking (right) strength for Hull and Newcastle (top)
and Leicester (bottom) for the 3 seasons.
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Figure A.6: Posterior means of the defense (left) and attacking (right) strength for Liverpool (top) and
Manchester City (bottom) for the 3 seasons.

Figure A.7: Posterior means of the defense (left) and attacking (right) strength for Manchester United (top)
and Middlesbrough and Brighton (bottom) for the 3 seasons.
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Figure A.8: Posterior means of the defense (left) and attacking (right) strength for Southampton (top) and
Stoke and Cardiff (bottom) for the 3 seasons.

Figure A.9: Posterior means of the defense (left) and attacking (right) strength for Sunderland and
Huddersfield (top) and Swansea and Wolves (bottom) for the 3 seasons.
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Figure A.10: Posterior means of the defense (left) and attacking (right) strength for Tottenham (top) and
Watford (bottom) for the 3 seasons.

Figure A.11: Posterior means of the defense (left) and attacking (right) strength for West Brom and Fulham
(top) and West Ham (bottom) for the 3 seasons.
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A.3 Traceplot and density estimates of Goal Attack and Defend parameters

In this section, we present the traceplots and density estimates for the Goal Attack and Defend
parameters for each of the top 5 teams in the final standings of the 2018-2019 English Premier
League season at three different time points. Specifically those time points are the first round,
the mid-season round (round 19) and the last round of the 2018-2019 season.
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Figure A.12: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Arsenal at the first round.
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Figure A.13: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Arsenal at the mid-season round.
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Figure A.14: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Arsenal at the last round.
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Figure A.15: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Chelsea at the first round.
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Figure A.16: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Chelsea at the mid-season round.
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Figure A.17: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Chelsea at the last round.
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Figure A.18: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Liverpool at the first round.
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Figure A.19: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Liverpool at the mid-season round.
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Figure A.20: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Liverpool at the last round.
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Figure A.21: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Manchester City at the first round.
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Figure A.22: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Manchester City at the mid-season round.
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Figure A.23: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Manchester City at the last round.
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Figure A.24: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Tottenham at the first round.
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Figure A.25: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Tottenham at the mid-season round.
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Figure A.26: Trace plot of the goal attack (top left) and of the defend (bottom left); density estimates of
the goal attack (top right) and of the defend (bottom right) for Tottenham at the last round.
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